A New Homotopy Transformation Method for Solving the Fuzzy Fractional Black–Scholes European Option Pricing Equations under the Concept of Granular Differentiability

نویسندگان

چکیده

The Black–Scholes option pricing model is one of the most significant achievements in modern investment science. However, many factors are constantly fluctuating actual financial market pricing, such as risk-free interest rate, stock price, underlying and security price volatility may be inaccurate real world. Therefore, it great practical significance to study fractional fuzzy model. In this paper, we proposed a reliable approximation method, Elzaki transform homotopy perturbation method (ETHPM) based on granular differentiability, solve time-fractional European equations. Firstly, function converted number horizontal membership (HMF). Secondly, specific steps ETHPM given Finally, some examples demonstrate that new approach simple, efficient, accurate. addition, solutions have been visualized at end paper.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

DIFFERENTIAL TRANSFORMATION METHOD FOR SOLVING FUZZY FRACTIONAL HEAT EQUATIONS

In this paper, the differential transformation method (DTM) was applied to solve fuzzy fractional heat equations. The elementary properties of this method were given. The approximate and exact solutions of these equations were calculated in the form of series with easily computable terms. The proposed method was also illustrated by some examples. The results revealed that DTM is a highly effect...

متن کامل

Solving Fuzzy Impulsive Fractional Differential Equations by Homotopy Perturbation Method

In this paper, we study semi-analytical methods entitled Homotopy pertourbation method (HPM) to solve fuzzy impulsive fractional differential equations based on the concept of generalized Hukuhara differentiability. At the end first of Homotopy pertourbation method is defined and its properties are considered completely. Then econvergence theorem for the solution are proved and we will show tha...

متن کامل

A NEW ANALYTICAL METHOD FOR SOLVING FUZZY DIFFERENTIAL EQUATIONS

In the literature, several numerical methods are proposed for solvingnth-order fuzzy linear differential equations. However, till now there areonly two analytical methods for the same. In this paper, the fuzzy Kolmogorov'sdifferential equations, obtained with the help of fuzzy Markov modelof piston manufacturing system, are solved by one of these analytical methodsand illustrated that the obtai...

متن کامل

A New Iterative Method For Solving Fuzzy Integral ‎Equations

In the present work, by applying known Bernstein polynomials and their advantageous properties, we establish an efficient iterative algorithm to approximate the numerical solution of fuzzy Fredholm integral equations of the second kind. The convergence of the proposed method is given and the numerical examples illustrate that the proposed iterative algorithm are ‎valid.‎

متن کامل

Homotopy method for solving fuzzy nonlinear equations

In this paper, we introduce the numerical solution for a fuzzy nonlinear systems by homotopy method. The fuzzy quantities are presented in parametric form. Some numerical illustrations are given to show the efficiency of algorithms. M.S.C. 2000: 34A12, 65L05.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Fractal and fractional

سال: 2022

ISSN: ['2504-3110']

DOI: https://doi.org/10.3390/fractalfract6060286